1.

1). 182). 203). 164). 19

Answer»

Let the three CONSECUTIVE odd numbers be x, x + 2, x + 4

We know,

$(\begin{array}{L} Average = \frac{{Sum\;of\;all\;OBSERVATIONS}}{{Number\;of\;observations}}\\ \Rightarrow Average = \frac{{x + \left( {x + 2} \right) + \left( {x\; + \;4} \right)}}{3}\; = \;\frac{{3\;\left( {x + 2} \right)}}{3}\; = \;x + 2 \end{array})$

It is given that Sum of three consecutive numbers = Average + 38

⇒ x + (x + 2) + (x + 4) = (x + 2) + 38

⇒ 2x + 4 = 38

⇒ 2x = 34

⇒ x = 17

⇒ x + 2 = 19

∴ The second number is 19



Discussion

No Comment Found