InterviewSolution
Saved Bookmarks
| 1. |
1). 182). 203). 164). 19 |
|
Answer» Let the three CONSECUTIVE odd numbers be x, x + 2, x + 4 We know, $(\begin{array}{L} Average = \frac{{Sum\;of\;all\;OBSERVATIONS}}{{Number\;of\;observations}}\\ \Rightarrow Average = \frac{{x + \left( {x + 2} \right) + \left( {x\; + \;4} \right)}}{3}\; = \;\frac{{3\;\left( {x + 2} \right)}}{3}\; = \;x + 2 \end{array})$ It is given that Sum of three consecutive numbers = Average + 38 ⇒ x + (x + 2) + (x + 4) = (x + 2) + 38 ⇒ 2x + 4 = 38 ⇒ 2x = 34 ⇒ x = 17 ⇒ x + 2 = 19 ∴ The second number is 19 |
|