InterviewSolution
| 1. |
1). 112). 123). 134). 14 |
|
Answer» According to the given information, m – 4 = 13 ⇒ m = 17 Average of 9 CONSECUTIVE INTEGERS STARTING with k = m = 17 $(\Rightarrow \;\frac{{k\; + \;\left( {k\; + \;1} \right)\; + \;\left( {k\; + \;2} \right)\; + \; \ldots\ldots .\; + \;\left( {k\; + \;8} \right)}}{9}\; = \;17)$ ⇒ k + (k + 1) + (k + 2) + ……. + (k + 8) = 17 × 9 = 153 ⇒ 9k + (8 × 9)/2 = 153 ⇒ 9k + 36 = 153 ⇒ 9k = 117 ⇒ k = 13 ∴ Average of 13 consecutive integers starting with k – 6 = $(\frac{{\left( {k - 6} \right)\; + \;\left( {k - 5} \right)\; + \; \ldots \; + \;\left( {k\; + \;5} \right)\; + \;\left( {k\; + \;6} \right)}}{{13}}\; = \;\frac{{13k}}{{13}}\; = \;13)$ |
|