1.

1). 112). 123). 134). 14

Answer»

According to the given information,

m – 4 = 13

⇒ m = 17

Average of 9 CONSECUTIVE INTEGERS STARTING with k = m = 17

$(\Rightarrow \;\frac{{k\; + \;\left( {k\; + \;1} \right)\; + \;\left( {k\; + \;2} \right)\; + \; \ldots\ldots .\; + \;\left( {k\; + \;8} \right)}}{9}\; = \;17)$ 

⇒ k + (k + 1) + (k + 2) + ……. + (k + 8) = 17 × 9 = 153

⇒ 9k + (8 × 9)/2 = 153

⇒ 9k + 36 = 153

⇒ 9k = 117

⇒ k = 13

∴ Average of 13 consecutive integers starting with

k – 6 = $(\frac{{\left( {k - 6} \right)\; + \;\left( {k - 5} \right)\; + \; \ldots \; + \;\left( {k\; + \;5} \right)\; + \;\left( {k\; + \;6} \right)}}{{13}}\; = \;\frac{{13k}}{{13}}\; = \;13)$



Discussion

No Comment Found