InterviewSolution
| 1. |
1). 62 : 552). 55 : 623). 31 : 194). 59 : 55 |
|
Answer» Solution : Given :ABCD is a TRAPEZIUM with AE and BF are perpendicular to CD side of trapezium and, AD= BC = 25cm Inside the trapezium there is a circle of radius 3.5cm and if we clear notice the diagram diameter of the circle will give us the LENGTH of EF,AB,AE,BF. Diameter of circle (2r) = length of EF So, EF = 2× 3.5 EF = AB = AE = BF = 7cm Length of DE =√(AD² - AE²) Length of DE =√(25² - 7²) Length of DE =√(625 - 49) Length of DE =√576 = 24cm Since BC = AD and BF = AE DE = FC = 24cm Area of trapezium ABCD = (AE/2)(AB + DC) AE =7cm , AB = 7cm , DC = DE + EF + FC = 24 + 7 + 24 = 55cm Area of trapezium ABCD = (7/2)(7 + 55) Area of trapezium ABCD = (3.5)(62) Area of trapezium ABCD =217cm² Area of trapezium ABCE = (BF/2)(AB + EC) BF = 7cm , AB = 7cm , EC = EF + FC = 7 + 24 = 31cm Area of trapezium ABCE = (7/2)(7 + 31) Area of trapezium ABCE = (3.5)(38) Area of trapezium ABCE = 133cm² Required ratio: Area of trapezium ABCD : Area of trapezium ABCE = 217 : 133 = 31 : 19 So, the correct option is 3).31 : 19 |
|