1.

2. A stone is thrown vertically upward with a velocity 20m/s from the top of a tower 25m high. Make calculations for the following parametersi) The max. Height to which the stone will rise in its flightii) Velocity of the stone during its downward travel at a point in the same level as the point of projection.iii) Time required for the stone to reach the ground.​

Answer»

Explanation :

here,

  • u = Initial Velocity = 20m/s

Finial Velocity = v = 0m/s

a = - 10m/s²

For Calculating :

\large \rm \: g = 10 \dfrac{m}{ {s}^{2} }  \\

Formula :

2as = v² - u²

  • Transposing The Terms

\large \tt  : \implies \: s =  \dfrac{ {v}^{2} -  {u}^{2}  }{2a}  \\  \\  \large \tt  : \implies \: s =  \dfrac{ 0 -  {20}^{2}  }{ - 2 \times 10}  m\\   \\  \\  \large \tt  : \implies \: s =  \dfrac{  - 400 }{ - 20}  \\   \\ \\   \large \tt  : \implies \: s =  \dfrac{  \cancel - 400 }{ \cancel - 20}  \\  \\  \\  \large \tt  : \implies \: s =  \dfrac{   \cancel{400} \:  \: 20 }{  \cancel{20}}  \\  \\  \\  \large \tt   \boxed{ \sf\therefore\: s = 20m }  \\  \\

Time Taken :

\\  \large \rm \leadsto \: t =  \frac{v - u}{a}  \\  \\

\large \sf  : \implies \: t =  \dfrac{0 - 20}{ - 10}  \\  \\  \\ \large \sf  : \implies \: t =  \dfrac{- 20}{ - 10}  \\ \\   \\ \large \sf   \therefore \underline{ \underline{\: t = 2seconds}} \longrightarrow \:  t_1 \\  \\

It reach 20m froma a HEIGHT of 25m

  • Finding Distance

\\  \large \sf \: s = 20 + 25 = 45m \\  \\

Since,

  • Object started falling from 45m

So Initial Velocity = u = 0

Acceleration = - 10m/s² =

  • Finding Time Taken :

Using Formula

\\  \large \rm \leadsto \: s = ut +  \frac{1}{2} a {t}^{2}  \\  \\

\large \tt  : \implies \: 45 = 0 \times t +  \dfrac{1}{2}  \times 10 \times  {t}^{2}  \\  \\  \\  \large \tt :  \implies \:  {t}^{2}  = 45 \times  \frac{2}{10}  \\ \\   \\  \large \tt :  \implies \:  {t}^{2}  =  \frac{90}{10}   \\ \\  \\  \large \tt :  \implies \:  {t}^{2}  = 9  \\  \\  \large \tt :  \implies \:  {t}^{}  =  \sqrt{ 9}  \\  \\  \large \tt   \boxed{ \underline{ \sf \therefore \: t = 3seconds}} \longrightarrow \: t_2 \\

For TOTAL Time :

  • Adding :

\\  \large \sf \: t =  \: t_1 + \:  t_2 \\ \\  \large \sf \implies \: t =  \: 2 + 3 \\ \\  \large \sf  \leadsto \boxed{ \rm t =  5 \: seconds} \\

So,

the stone will reach the ground in 5 seconds after being thrown upwards from tower.



Discussion

No Comment Found

Related InterviewSolutions