1.

`7^(2n)+2^(3n-3)*3^(n-1)` is divisible by 25

Answer» by appliying the mathematical induction formula,
we have, `(7^2)^n + (2^3)^(n-1) * 3^(n-1)`
`(49)^n + (8)^(n-1).3^(n-1)`
`49^n + 24^(n-1)`
`(50-1)^n + (25-1)^(n-1)`
`.^nC_0*(50)^n - .^nC_1(50)^(n-1) .....................- .^(n-1)C_(n-1)*(-1)^(n-1) `
`25k + (-1)^n + (-1)^(n-1)`
now, if n= odd then n-1 = evenand if n= even then n-1 = oddtherefore the term ` underbrace((-1)^n + (-1)^(n-1) )` is always going to be zero (0)therefore, the equation will be as = 25kso, it is divisible by 25.


Discussion

No Comment Found