InterviewSolution
Saved Bookmarks
| 1. |
(a) A longitudinal wave propagating in a water-filled pipe has intensity `3.00xx10^(-6) W//m ^(2)` and frequency `3400 H_(Z)` . Find the amplitude `A` and wavelength `lambda` of the wave . Water has density `1000 kg//m ^(3)` and bulk modulus `2.18xx10^(9) Pa`. (b) If the pipe is filled with air at pressure `1.00 xx10^(5)` Pa and density `1.20 kg//m^(3)`, What will be the amplitude `A` and wavelength `lambda` of a longitudinal wave the same intensity and frequency as in part (a) ? (c ) In which fluid is the amplitude larger, water or air? What is the ratio of the two amplitude ? Why is this ratio so different from/ Conider air as diatomic. |
|
Answer» Correct Answer - A::B::C::D (a) `nu = sqrt((B)/(rho)) = sqrt((2.18 xx 10^(9))/(1000))` `= 1476 m//s` `lambda = (nu)/(f) = (1476)/(3400) = 0.43 m` `I = (1)/(2) rho omega ^(2) A^(2) nu` `:. A = sqrt((2l)/(rho (2pi f)^(2) nu)` `= sqrt((2 xx3 xx10^(-6))/((1000) (2pixx3400)^(2)(1476)))` `= 9.44 xx10^(-11) m` (b) `nu = sqrt((gamma P)/(rho)) = sqrt(((1.4) (10^(5)))/((1.2)))` `= 341.56 m//s` `lambda = (nu)/(f) = (341.56)/(3400) = 0.1 m` `A = sqrt ((2l)/(rho (2 pi f)^(2) nu))` `= sqrt((2 xx3.0 xx10^(-6))/(1.2xx (2pixx3400)^(2)(341.56)))` (c) `(A_(air))/(A_(water)) = (5.66 xx 10^(-9))/(9.44 x10^(-11)) = 60` `I = (1)/(2) rho omega^(2) A^(2) nu` `rho` and `nu` are less in air . So , for same intensity `A` should be large. |
|