| 1. |
A particle A of mas of 3mg is balanced by keeping another object of B of charge +30nCbelow it at a depth of 5cm. What should be the charge on A in order to balance it against gravity? |
|
Answer» Answer: Given: A particle A of mas of 3mg is balanced by keeping ANOTHER object of B of charge +30nC below it at a depth of 5cm. To find: Charge on A in ORDER to balance the object against Gravity. Calculation: Object A will be balanced against gravity only when the gravitational force acting on it is equal to the electrostatic force exerted by object B. \therefore \: F_{g} = F_{E}∴F g
=F E
= > mg = \dfrac{k(q1)(q2)}{ {r}^{2} }=>mg= r 2
k(q1)(q2)
= > 3 \times {10}^{ - 6} \times 10 = \dfrac{k(q1)(30 \times {10}^{ - 9} )}{ {(0.05)}^{2} }=>3×10 −6 ×10= (0.05) 2
k(q1)(30×10 −9 )
= > 3 \times {10}^{ - 5} = \dfrac{k(q1)(30 \times {10}^{ - 9} )}{ {(0.05)}^{2} }=>3×10 −5 = (0.05) 2
k(q1)(30×10 −9 )
= > 3 \times {10}^{ - 5} = \dfrac{k(q1)(30 \times {10}^{ - 9} )}{ 25 \times {10}^{ - 4} }=>3×10 −5 = 25×10 −4
k(q1)(30×10 −9 )
= > 3 \times {10}^{ - 5} = \dfrac{k(q1)(6 \times {10}^{ - 9} )}{ 5 \times {10}^{ - 4} }=>3×10 −5 = 5×10 −4
k(q1)(6×10 −9 )
= > {10}^{ - 5} = \dfrac{k(q1)(2 \times {10}^{ - 9} )}{ 5 \times {10}^{ - 4} }=>10 −5 = 5×10 −4
k(q1)(2×10 −9 )
= > {10}^{ - 9} = \dfrac{k(q1)(2 \times {10}^{ - 9} )}{ 5 }=>10 −9 = 5 k(q1)(2×10 −9 )
= > 1 = \dfrac{k(q1)(2 )}{ 5 }=>1= 5 k(q1)(2)
= > 1 = \dfrac{9 \times {10}^{9} (q1)(2 )}{ 5 }=>1= 5 9×10 9 (q1)(2)
= > \: q1 = \dfrac{5 \times {10}^{ - 9} }{18}=>q1= 18 5×10 −9
= > \: q1 = 0.27 \times {10}^{ - 9}=>q1=0.27×10 −9
= > \: q1 = 0.27 \: \: nC=>q1=0.27nC So, final answer: \boxed{ \SF{ \: q1 = 0.27 \: \: nC }} q1=0.27nC
|
|