InterviewSolution
Saved Bookmarks
| 1. |
A simple `LR` circuit is connected to a battery at time `t = 0`. The energy stored in the inductor reaches half its maximum value at timeA. `(R )/(L)` In `[(sqrt(2))/(sqrt(2) - 1)]`B. `(L )/(R)` In `[(sqrt(2)-1)/(sqrt(2))]`C. `(L )/(R)` In `[(sqrt(2))/(sqrt(2) - 1)]`D. `(R)/(L)` In `[(sqrt(2)-1)/(sqrt(2))]` |
|
Answer» Correct Answer - C `U_(max) = (1)/(2) LI_(0)^(2)`, `U = (U_(max))/(2)` `rArr (1)/(2) LI^(2) = (1)/(2) [(1)/(2) LI_(0)^(2)] rArr I_(0)^(2)[1 - e^(-t//tau)]^(2) = (I_(0)^(2))/(2)` `rArr e^(-t//tau) = 1 - (1)/(sqrt(2)) = (sqrt(2) - 1)/(sqrt(2))` `rArr -(t)/(tau) = In ((sqrt(2) - 1)/(sqrt(2))) rArr t = tau In ((sqrt(2))/(sqrt(2) - 1))` |
|