

InterviewSolution
Saved Bookmarks
1. |
A straight line passes through the points (5, 0) and (0, 3). The length of the perpendicular from the point (4, 4) on the line is:(a) \(\frac{\sqrt{17}}{2}\)(b) \(\frac{\sqrt{17}}{2}\)(c) \(\frac{15}{\sqrt{34}}\)(d) \(\frac{17}{2}\) |
Answer» (b) \(\frac{\sqrt{17}}{2}\) Equation of the line through the points (5, 0) and (0, 3) y – 0 = \(\frac{3-0}{0-5}\) (x - 5) ⇒ y = \(\frac{-3}{5}\)(x - 5) ⇒ 5y + 3x – 15 = 0 ∴ Distance of perpendicular from point (4, 4) on the line 5y + 3x – 15 = 0 is \(\bigg|\frac{5\times4+3\times4-15}{\sqrt{5^2+3^2}}\bigg|\) = \(\frac{|20+12-15|}{\sqrt{25+9}{}}\) = \(\frac{17}{\sqrt{34}}\) units. = \(\frac{\sqrt{17}}{2}\) units. |
|