1.

Area of triangle formed by the vertices `z, omega z and z+omega z` is `4/sqrt(3)`, `omega` is complex cube roots of unity then `|z|` is (A) `1` (B) `4/3` (C) `3/4` (D) `4/(sqrt3)`

Answer» `1 + omega + omega^2 = 0`
`z, z omega , z + z omega`
`z , z omega , z(1 + omega)`
`z , z omega , - z omega^2 `
area `/_ ABC= 1/2 xx b xxh `
`1/2 xx AB xx OD`
`1/2 xx 1 xx sqrt3/2 = sqrt3/4`
so `1, omega , -omega^2`
`z, z omega , - z omega^2 `
area = `|z|^2 xx sqrt3/4 = 4/sqrt3`
`|z|^2 = 16/3`
`|z| = 4/ sqrt3`
Answer


Discussion

No Comment Found