1.

Arjun driving at 36 km per hour accelerates with uniform velocity at the rate of 0.5 metre per second for 10 seconds calculate the velocity of the car after 10 seconds also calculate the distance travelled by the car

Answer»

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Final\:velocity(v)=15\:m/s}}}

\green{\therefore{\text{Distance\:travelled(s)=125\:m}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

\green{ \underline \bold{<klux>GIVEN</klux> : }} \\   : \implies  \text{Initial \: velocity(u)= 36 \: km/h} \\  \\    : \implies   \text{Acceleration(a) = 0.5 {m/s}}^{2}  \\  \\ \implies   \text{Time(t) = 10 \: seconds} \\  \\  \red{ \underline \bold{To \: Find : }} \\    : \implies  \text{Velocity(v)}_{ \text{after \: 10 \: sec}} = ? \\  \\   : \implies  \text{Distance \: travelled(s) = ?}

ACCORDING to given QUESTION:

\text{Initial \: velocity} = 36 \times  \frac{5}{18}  = 10 \: {m/s} \\  \\ \bold{Using \: first \: equation \: of \: motion} \\   : \implies  \text{v = u + at} \\  \\   : \implies v = 10 + 0.5 \times 10 \\  \\ : \implies v= 10 + 5 \\  \\  \green{: \implies  \text{v = 15 \:  m/s}} \\   \\  \bold{Using \: second \: equation \: of \: motion}\\   : \implies s = ut +  \frac{1}{2}  {at}^{2} \\  \\   : \implies s = 10 \times 10 +  \frac{1}{2}  \times  \frac{1}{2}  \times  {10}^{2}  \\  \\   : \implies s = 100 +  \frac{1}{4}  \times 100 \\  \\   : \implies s = 100 + 25 \\  \\ \green{ : \implies  \text{s = \: 125 m}}



Discussion

No Comment Found

Related InterviewSolutions