1.

assume that Earth has a surface charge density of 1 electron per metre^2 . calculate the earth's electric field​

Answer»

Given:

Earth has a surface CHARGE density of one electron PER metre².

To find:

Electrostatic field intensity at Earth surface.

Calculation:

Applying GAUSS' Theorem:

\therefore \displaystyle \:  \int E .ds \: =  \:  \frac{q}{ \epsilon_{0}}

=  >  \displaystyle \:E   \int ds \: =  \:  \frac{q}{ \epsilon_{0}}

=  >  \:E    \times 4\pi {r}^{2}  \: =  \:  \dfrac{q}{ \epsilon_{0}}

=  >  \:E    \: =  \:  \dfrac{q}{ 4\pi {r}^{2} \epsilon_{0}}

=  >  \:E    \: =  \:  \dfrac{1}{ \epsilon_{0}}  \times  \dfrac{q}{4\pi {r}^{2} }

=  >  \:E    \: =  \:  \dfrac{1}{ \epsilon_{0}}  \times   \sigma

=  >  \:E    \: =  \:  \dfrac{ \sigma}{ \epsilon_{0}}

=  >  \:E    \: =  \:  \dfrac{1.6 \times  {10}^{ - 19} }{ \epsilon_{0}}

=  >  \:E    \: =  \:  \dfrac{1.6 \times  {10}^{ - 19} }{8.85 \times  {10}^{ - 12} }

=  >  \: E = 1.87 \times  {10}^{ - 7}  \: N {C}^{ - 1}

So, FINAL answer is:

\boxed{ \red{ \bold{  \: E = 1.87 \times  {10}^{ - 7}  \: N {C}^{ - 1} }}}



Discussion

No Comment Found

Related InterviewSolutions