Saved Bookmarks
| 1. |
At what points on the curve `x^2+y^2-2x-4y+1=0`, the tangents are parallel to the `y-a xi s ?` |
|
Answer» Given, equation of curve which is `x^(2) + y^(2)-2x-4y+1=0` `rArr 2x+2y(dy)/(dx)-2-4(dy)/(dx)=0` `rArr (dy)/(dx)(2y-4)=2-2x` `rArr (dy)/(dx) = (2(1-x))/(2(y-2))` Since, the tangents are parall to the Y-axis i.e., `tantheta = tan90^(@)=(dy)/(dx)` `therefore (1-x)/(y-2)=1/0` `rArr y-2=0` `rArr y=2` For y=2 from Eq.(i), we get `x^(2)+2^(2)-2x-4 xx 2+1=0` `rArr x^(2)-2x-3=0` `rArr x(x-3)+1(x-3)=0` `rArr (x+1)(x-3)=0` `therefore x=-1, x=3` So, the required points are `(-1,2)` and (3,2). |
|