1.

Find the equation of tangents to the curve `y=cos(x+y),-2pilt=xlt=2pi`that are parallel to the line `x + 2y = 0`.

Answer» Equation of the line parallel to the tangent is,
`x+2y = 0 => y = -1/2x`
`:.` Slope`(m) = -1/2`
So, slope of the tangent will be `-1/2`.
Now, `y = cos(x+y)`
`=>dy/dx = -sin(x+y)(1+dy/dx)`
As `m = -1/2, :. dy/dx = -1/2`
`=> -1/2 = -sin(x+y)(1-1/2)`
`=> sin(x+y) = 1`
`=>x+y = pi/2 or x+y = (-3pi)/2`
As, `y = cos(x+y)`
`:. y = cos(pi/2) = 0 or y = cos((-3pi)/2) = 0`
`:. x = pi/2 or x = (-3pi)/2`
So, Equation of the line, when `x = pi/2`
`(y-0) = -1/2(x-pi/2)`
`=> y = -1/2x+pi/4`
`=>4y+2x-pi = 0`
Equation of the line. when `x =(-3 pi)/2`
`(y-0) = -1/2(x+(3pi)/2)`
`=> y = -1/2x-(3pi)/4`
`=>4y+2x+3pi = 0`


Discussion

No Comment Found