1.

अवकल समीकरण `(1+e^(2x))dy+(1+y^(2))e^(x)dx=0` को हल कीजिये जहाँ y=1 यदि x=0

Answer» `(1+e^(2x))dy+(1+y^(2))e^(x)dx=0`
`implies(dy)/(1+y^(2))+(e^(x))/(1+e^(2x))dx=0`
समाकलन में,
`int(dy)/(1+y^(2))+int(e^(x)dx)/(1+e^(2x))=0`
`impliestan^(-1)y+tan(e^(x))=c" ".......(1)`
प्रश्नानुसार, जब x=0 तब y=1
`impliestan^(-1)1+tan^(-1)(e^(0))=c`
`implies(pi)/(4)+(pi)/(4)=cimpliesc=(pi)/(4)`
अतः समीकरण (1) से,
`tan^(-1)y+tan^(-1)(e^(x))=(pi)/(2)`


Discussion

No Comment Found