1.

अवकल समीकरण `(dy)/(dx)=(x^(2)-y^(2))/(xy)` को हल कीजिए।

Answer» `(dy)/(dx)=(x^(2)-y^(2))/(xy)" ….(1)"`
यह एक समघातीय अवकल समीकरण है।
माना y = vx
समीकरण (1) में रखने पर
`v+x(dv)/(dx)=(x^(2)-v^(2)x^(2))/(x^(2)v)=(1-v^(2))/(v)`
`implies x(dv)/(dx)=(1-v^(2))/(v)-v=(1-2v^(2))/(v)`
`implies (v)/(1-2v^(2))dv=(dx)/(x)`
`implies int(v)/(1-2v^(2))dv=int(dx)/(x)` माना `1-2v^(2)=t`
`therefore -4v=(dt)/(dv)`
`implies int(dt)/(-4t) =int(dx)/(x)=vdv=(dt)/(-4)`
`implies-(1)/(4)logt+logc=logx`
`implies logc=logx+log^(t//4)`
`implies c=x.t^(1//4)`
`impliesc^(4)=x^(4).t=x^(4).(1-2v^(2))`
`=x^(4)(1-(2y^(2))/(x^(2)))impliesc_(1)=x^(2)(x^(2)-2y^(2))`


Discussion

No Comment Found