1.

अवकलन समीकरण `(1-x^(2))(1-y)dx=xy(1+y)dy` को हल कीजिए।

Answer» `(1-x^(2))(1-y)dx=xy(1+y)dy`
`implies ((1-x^(2)))/(x)dx=(y(1+y))/((1-y))dy`
`implies ((1)/(x)-x)dx=(-y-2+(2)/(1-y))dy`
`impliesint((1)/(x)-x)dx=int(-y-2+(2)/(1-y))dy+c`
`implies logx-(x^(2))/(2)=-(y^(2))/(2)-2y-2log(1-y)+c`
`implies logx+2log(1-y)=(x^(2))/(2)-(y^(2))/(2)-2y+c`
`implies log{x(1-y)^(2)}=(1)/(2)(x^(2)-y^(2))-2y+c`


Discussion

No Comment Found