1.

B) For a thermodynamic system, isobaric coefficient of volume expansion (a) andisothermal compressibility (B) are defined as1 ava=)и отp1 avB=-У дрT TShow that for an isochoric change, ß dp = a dT.​

Answer»

Explanation:

Given,

\alpha = \frac{1}{V}(\frac{dV}{dT})_pα=

V

1

(

dT

dV

)

p

\beta = - \frac{1}{V}(\frac{dV}{DP})_Tβ=−

V

1

(

dP

dV

)

T

Now, from the ideal GAS equation,

PV=nRTPV=nRT

V=\frac{nRT}{P}V=

P

nRT

Now, taking the DIFFERENTIATION with respect to the corresponding terms,

\frac{dV}{dT}=\frac{NR}{P}

dT

dV

=

P

nR

if P is constant then,

(\frac{dV}{dT})_P=\frac{nR}{P}...(i)(

dT

dV

)

P

=

P

nR

...(i)

now, taking the differentiation with respect to P,

(\frac{dV}{dP})_T=\frac{nRT}{P^2}...(ii)(

dP

dV

)

T

=

P

2

nRT

...(ii)

Now, taking the ratio of (i)(i) and (ii)(ii)

\frac{(\frac{dV}{dT})_P}{(\frac{dV}{dP})_T}=\frac{\frac{nR}{P}}{\frac{nRT}{P^2}}

(

dP

dV

)

T

(

dT

dV

)

P

=

P

2

nRT

P

nR

\frac{(dP)_T}{(dT)_P}=\frac{P}{T}

(dT)

P

(dP)

T

=

T

P

(dP)_T=(dT)_P\times \frac{P}{T}(dP)

T

=(dT)

P

×

T

P



Discussion

No Comment Found

Related InterviewSolutions