1.

Calculate length of seconds pendulum at a place where g= 9.78 m/s^2(meter/ second square).

Answer»

Answer:

\boxed{\sf <klux>LENGTH</klux> \ of \ seconds \ pendulum \ (<klux>L</klux>) = 0.99 \ m \approx 1 \ m}

Given:

Acceleration due to GRAVITY (g) = 9.78 m/s²

To Find:

Length of seconds pendulum (l)

EXPLANATION:

Time period (T) for one oscillation in seconds pendulum is 2 seconds.

\sf \implies T = 2 \ s

Formula:

\boxed{ \bold{ \sf T = 2\pi  \sqrt{ \frac{l}{g} } }}

\sf \implies l = \frac{T ^{2} g}{4 {\pi}^{2} }

Substituting values of T & g in the equation:

\sf \implies l =  \frac{ {2}^{2} \times 9.78 }{4 \times3.14 ^{2} }

\sf \implies l =  \frac{ \cancel{4} \times 9.78}{ \cancel{4} \times 9.8596}

\sf \implies l =  \frac{ 9.78}{ 9.8596}

\sf \implies l = 0.99 \: m \approx 1 \: m

\therefore

Length of seconds pendulum (l) = 0.99 m ≈ 1 m



Discussion

No Comment Found

Related InterviewSolutions