1.

Column I contains rational algebraic expressions and Column II contains possible integers of a.

Answer» Correct Answer - `(A)to(q,r,s,t),(B)to(q,r),(C)to(p,q)`
`Ato(q,r,s,t), Bto(q,r,):Cto(p,q)`
(A) We have `y=(ax^(2)+3x-4)/(3x-4x^(2)+a)`
`impliesx^(2)(a+4y)+3(1-y)x-(ay+4)=0`
As `x epsilon R ` we get
`Dge0`
`implies9(1-y)^(2)+4(a+4y)(ay+4)ge0`
`implies(9+16a)y^(2)+(4a^(2)+46)y+(9+16a)ge0,AA y espsilon R`
`implies` If `9+16agt0` then `Dle0`
Now `D le0`
`implies(4a^(2)+46)^(2)-4(9+16a)^(2)le0`
`implies4[(2a^(2)+23)^(2)-(9+16a)^(2)]le0`
`implies[(2a^(2)+23)+(9+16)][(2a^(2)+23)-(9+16a)]le0` ltbRgt `implies(2a^(2)+16a+32)(2a^(2)-16a+14)le0`
`implies4(a+4)^(2)(a^(2)-8a+8)le0`
`impliesa^(2)-8a+8le0`
`implies(a-1)(a-8)le0` ltbr `implies1leale7`
`:.9+16ag0` and 1leale7`
`implies1leale7`
(B) we have `y=(ax^(2)+x-2)/(a+x-2x^(2))`
`impliesx^(2)(a+2y)+x(1-y)-(2+ay)=0`
As `x epsilonR` we get
`Dge0`
`implies(1-y)^(2)+4(2+ay)(a+2y)ge0`
`implies(1+8a)y^(2)+(4a^(2)+14)y+(1+8a)ge0`
`implies` If `1+8agt0` then `Dle0`
`implies(4a^(2)+14)^(2)-4(1+8a)^(2)le0`
`implies4[(2a^(2)+7)^(2)-(1+8a)^(2)]le0`
`implies[(2a^(2)+7)+(1+8a)][(2a^(2)+7)-(1+8a)]le0`
`implies(2a^(2)+8a+8)(2a^(2)-8a+6)le0`
`implies4(a+2)^(2)(a^(2)-4a+3)le0`
`impliesa^(2)-4a+3le0`
`implies(a-1)(a-3)le0`
`implies1leale3`
Thus `1+8agt0` and `1leale3`
`implies1leale3`
(C)We have `y=(x^(2)+2x+a)/(x^(2)+4x+3a)`
`impliesx^(2)(y-1)+2(2y-1)x+a(3y-1)=0`
As `x epsilon R` We get
`Dge0` ltbRgt `implies4(2y-1)^(2)-4(y-1)a(3y-1)ge0`
`implies(4-3a)y^(2)-(4-4a)y+(1-a)ge0`
`implies` If `4-3agt0` then `Dle0`
`implies(4-4a)^(2)-4(4-3a)(1-a)le0`
`implies4(2-2a)^(2)-4(4-3a)(1-a) le 0`
`implies4+4a^(2)-8a-(4-8a+3a^(2))le0`
`implies a^(2)-ale0`
`impliesa(a-1)le0` ltbRgt `implies0leale1`


Discussion

No Comment Found

Related InterviewSolutions