1.

Consider the following: 1. tan2 θ – sin2 θ = tan2 θ sin2 θ 2. (1 + cot2 θ) (1– cos θ) (1 + cos θ) = 1Which of the statements given below is correct? (a) 1 only is the identity (b) 2 only is the identity (c) Both 1 and 2 are identities (d) Neither 1 nor 2 is the identity

Answer»

1. tan2 θ - sin2 θ = \(\frac{sin^2\,\theta}{cos^2\,\theta}\) - sin2 θ

\(\frac{sin^2\,\theta - sin^2\,\theta\,cos^2\,\theta}{cos^2\,\theta}\)

\(\frac{sin^2\,\theta(1-cos^2\,\theta)}{cos^2\,\theta}\) = \(\frac{sin^2\,\theta}{cos^2\,\theta}\) x sin2 θ = tan2 θ sin2 θ

2. (1 + cot2 θ) ( 1– cos θ) (1 + cos θ) 

= ( 1+ cot2 θ) (1– cos2 θ)

\(\bigg(1+\frac{cos^2\,\theta}{sin^2\,\theta}\bigg)(1-cos^2\,\theta)\)

\(\bigg(\frac{sin^2\,\theta + cos^2\,\theta}{sin^2\,\theta}\bigg) \times sin^2\,\theta\)

(∴ 1 – cos2 θ = sin2 θ) = 1. (cos2 θ + sin2 θ =1) 

∴ (c) is the correct option.



Discussion

No Comment Found