1.

`cos^(2)x(dy)/(dx)+y=tanx(0lexlt(pi)/(2))`

Answer» `cos^(2)x(dy)/(dx)+y=tanx`
`implies(dy)/(dx)+ysec^(2)x=tanx sec^(2)x`
यहाँ, `P=sec^(2)x` और `Q=tan x sec^(2)x`
अब, `I.F.=e^(intsec^(2)xdx)=e^(tanx)`
और व्यापक हल
`ye^(tanx)=inttanxsec^(2)xe^(tanx)dx+c`
`=intte^(t)dt+c`
`=te^(t)-int1.e^(t)dt+c`
माना `tanx=t implies sec^(2)xdx=dt`
`=te^(t)-e^(t)+c`
`=e^(t)(t-1)+c`
`=e^(tanx)(tanx-1)+c`
`impliesy=tanx-1+c.e^(-tanx)`


Discussion

No Comment Found