

InterviewSolution
Saved Bookmarks
1. |
`cos^(2)x(dy)/(dx)+y=tanx(0lexlt(pi)/(2))` |
Answer» `cos^(2)x(dy)/(dx)+y=tanx` `implies(dy)/(dx)+ysec^(2)x=tanx sec^(2)x` यहाँ, `P=sec^(2)x` और `Q=tan x sec^(2)x` अब, `I.F.=e^(intsec^(2)xdx)=e^(tanx)` और व्यापक हल `ye^(tanx)=inttanxsec^(2)xe^(tanx)dx+c` `=intte^(t)dt+c` `=te^(t)-int1.e^(t)dt+c` माना `tanx=t implies sec^(2)xdx=dt` `=te^(t)-e^(t)+c` `=e^(t)(t-1)+c` `=e^(tanx)(tanx-1)+c` `impliesy=tanx-1+c.e^(-tanx)` |
|