1.

Derivative expressions for the kinetic energy and potential energy of a simple harmonic oscillator.

Answer»

Solution :Expression for K.E of a SIMPLE harmonic oscillator: The displacement of the body in S.H.M., `X=Asinomegat`
where A = amplitude, `omegat=` Angular displacement.
Velocity at any instant, `y=dy/dx=Aomegacosomegat`
`therefore K.E=1/2mv^(2)=1/2mA^(2)omega^(2)cos^(2)omegat`
`therefore K.E=(1)/(2)mA^(2)omega^(2)(1-sin^(2)omegat)`
`=(1)/(2)mA^(2)omega^(2)[1-(x^(2))/(A^(2))]`
`=(1)/(2)MOMEGA^(2)[A^(2)-x^(2)]`
`therefore K.E =(1)/(2)momega^(2)[A^(2)-x^(2)]`
At mean position velocity is maximum and displacement `x=0`
`therefore K.E_(max)=(1)/(2)mA^(2)omega^(2)`
Expression for P.E of simple harmonic oscillator: Let a body of mass 'm' is in S.H.M with an amplitude A.

Let O is the mean position.
EQUATION of a body inS.H.M is given by `x=Asinomegat`
For body in S.H.M acceleration, `a=-omega^(2)Y`
Force, `F=ma=-momega^(2)x`
`therefore` Restoring force, `F=momega^(2)x`
Potential energy of the body at any point say 'x': Let the body is displaced through a small DISTANCE dx
Work done, `dW=F.dx=P.E.`
This work done.
`therefore P.E=momega^(2)x.dx`(where x is its displacement)
Total work done, `W=intdW=int_(0)^(x)momega^(2)x.dx`
`rArr` Work done, `W=(momega^(2)x^(2))/(2)`.
This work is stored as potential enerygy.
`therefore` P.E. at any point `=1/2momega^(2)x^(2)`


Discussion

No Comment Found