

InterviewSolution
Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
1. |
Prove that : `(tan theta)/(sectheta+1)-(tantheta)/(1-sectheta)=2cosec theta` |
Answer» L.H.S `=(tantheta)/(sectheta+1)-(tantheta)/(1-sectheta)=tan theta((1)/(sectheta+1)+(1)/(sectheta-1))` `=tantheta[(sectheta-1+sectheta+1)/((sectheta-1)(sectheta+1))]= tantheta*(2sectheta)/(sec^(2)theta-1)` `=(2tanthetasectheta)/(tan^(2)theta)=(2sectheta)/(tantheta)=2xx(1)/(costheta)xx(costheta)/(sintheta)` `=(2)/(sintheta)=2"cosec"theta=R.H.S.` |
|
2. |
`(tantheta+2)(2 tantheta+1) = 5 tantheta+ sec^(2)theta` |
Answer» False, LHS = `(tantheta+2)(2 tantheta+1)` `=2tan^(2)theta+4 tantheta+tantheta+2` `[therefore sec^(2)theta-tan^(2)theta=1]` `=2sec^(2)theta + 5 tantheta=RHS` |
|
3. |
Prove that : `tantheta+tantheta+tan(90^(@)-theta)=sectheta*sec(90^(@)-theta)` |
Answer» L.H.S. `=tantheta+tan(90^(@)-theta)` `=tantheta+cottheta` `=(sintheta)/(costheta)+(costheta)/(sintheta)=(sin^(2)theta+cos^(2)theta)/(costhetasintheta)` `=(1)/(costheta*sintheta)=sectheta*"cosec "theta` `=sectheta*sec(90^(@)-theta)=R.H.S.` |
|
4. |
If `1+sin^(2)theta = 3sinthetacostheta`, then prove that `tantheta=1` or `1/2`. |
Answer» Given, `1+sin^(2)theta= 3sintheta.costheta` On dividing by `sin^(2)theta` on both sides, we get `1/(sin^(2)theta)+1=3.cottheta` `[therefore cottheta=(costheta)/(sintheta)]` `rArr "cosec"^(2)theta + 1=3.cottheta` `["cosec"theta = 1/(sintheta)]` `rArr 1+cot^(2)theta+1=3.cottheta` `["cosec"theta= 1/(sintheta)]` `rArr 1+ cot^(2)theta+1 = 3.cottheta` `[therefore "cosec"^(2)theta-cot^(2)theta=1]` `rArr cot^(2)theta-3cottheta+2=0` `rArr cot^(2)theta - 2cottheta-cottheta+2=0` [by splitting the middle term] `rArr cottheta(cottheta-2)-1(cottheta-2)=0` `rArr (cottheta-2)(cottheta-1)=0 rArr cottheta=1` or 2 `rArr tantheta=1 or 1/2` `[therefore tantheta=1/(cottheta)]` Hence Proved. |
|
5. |
The angleof elevation of the top of a tower from a certain point is `30o`. If theobserver moves 20 m towards the tower, the angle of elevation of the top ofthe tower increases by `15o`. Theheight of the tower is(a) 17.3m (b) 21.9 m (c) 27.3 m (d) 30 m |
Answer» Let the height of the tower be h. also, SR=x m, `anglePSR = theta` Given that, QS = 20m and `anglePQR = 30^(@)` Now, in `DeltaPSR`, `tantheta=(PR)/(SR) = h/x` `rArr tantheta=h/x` `rArr x=h/(tantheta)`................(i) Now, in `DeltaPQR`, `tan30^(@)=(PR)/(QR) = (PR)/(QS+SR)` `rArr 20+x = h/(tan 30^(@)) = h/(1//sqrt(3))` `rArr 20+x = hsqrt(3)` `rArr 20+h/(tantheta)=hsqrt(3)` ..............(ii) From Eq. (i) Since, after moving 20 m towards the tower the angle of elevation of the top increases by `15^(@)`. i.e., `anglePSR = theta= anglePQR + 15^(@)` `rArr theta=30^(@) + 15 = 45^(@)` `therefore 20 + (h/tan 45^(@)) = hsqrt(3)` `rArr 20 + h/1= hsqrt(3)` `rAr 20 = hsqrt(3)-h` `rArr h(sqrt(3)-1)=20` `therefore h=(20)/(sqrt(3)-1).(sqrt(3)+1)/(sqrt(3)+1)` [by rationalisation] `rAr = (20(sqrt(3)+1))/(3-1) = (20(sqrt(3)+1))/(2)` `rArr =10(sqrt(3)+1)`m Hence, the required height lof tower is `10(sqrt(3)+1)`m. |
|
6. |
The lower window of a house is at a height of 2m above the ground and its upper window is 4m vertically above the tower window. At certain instant the angles of elevation of a balloon from these windows are observed to be `60^(@)` and `30^(@)`, respectively. Find the height of the balloon above the ground. |
Answer» Let the height of the balloon from above the grond is H. A and OP = `w_(2)R=w_(1)Q=x` Given that, height of lower window from the above the ground `=w_(2)P=2m=OR` Height of upper window from above in the lower window `=w_(1)w_(2)=4m=QR` `therefore BQ=OB=(QR+RO)` `=H-(4+2)` `=H-6` and `angleBw_(1)Q=30^(@)` `rArr angleBw_(2)R=60^(@)` Now, in `DeltaBw_(2)R` `tan60^(@)= (BR)/(w_(2)R) = (BQ+QR)/(x)` `rArr sqrt(3) = ((H-6)+4)/(x)` `rArr x=(H-2)/(sqrt(3))`................(i) and in `DeltaBw_(1)Q`, `tan30^(@)= (BQ)/(w_(1)Q)` `tan30^(@)= (H-6)/x = 1/sqrt(3)` `rArr x=sqrt(3)(H-6)`...........(ii) From Eqs. (i) and (ii), ltbgt `sqrt(3)(H-6) = ((H-2))/(sqrt(3))` `3(H-6) = H-2 = 3H-18 = H-2` `rArr 2H=16 rArr H=8` So, the required height is 8m. Hence, the required height of the ballon from above ground is 8 m. |
|