1.

If `1+sin^(2)theta = 3sinthetacostheta`, then prove that `tantheta=1` or `1/2`.

Answer» Given, `1+sin^(2)theta= 3sintheta.costheta`
On dividing by `sin^(2)theta` on both sides, we get
`1/(sin^(2)theta)+1=3.cottheta` `[therefore cottheta=(costheta)/(sintheta)]`
`rArr "cosec"^(2)theta + 1=3.cottheta` `["cosec"theta = 1/(sintheta)]`
`rArr 1+cot^(2)theta+1=3.cottheta` `["cosec"theta= 1/(sintheta)]`
`rArr 1+ cot^(2)theta+1 = 3.cottheta` `[therefore "cosec"^(2)theta-cot^(2)theta=1]`
`rArr cot^(2)theta-3cottheta+2=0`
`rArr cot^(2)theta - 2cottheta-cottheta+2=0` [by splitting the middle term]
`rArr cottheta(cottheta-2)-1(cottheta-2)=0`
`rArr (cottheta-2)(cottheta-1)=0 rArr cottheta=1` or 2
`rArr tantheta=1 or 1/2` `[therefore tantheta=1/(cottheta)]` Hence Proved.


Discussion

No Comment Found