| 1. |
Derive an expression for K.E and P.E and total energy and represent variation of these with displacement for a particle executing SHM. |
|
Answer» Explanation: For SHM, ACCELERATION , a = -ω²y F = ma = -mω²y now, work , W = F.dy cos180° { because displacement and acceleration are in opposite direction so, cos180° taken } W = ∫mω²y.dy = mω²y²/2 use standard FORM of SHM , y = Asin(ωt ± Ф) W = mω²A²/2 sin²(ωt ± Ф) We know, Potential ENERGY is work done STORED in system . so, P.E = W = mω²A²/2 sin²(ωt ± Ф) again, KINETIC energy , K.E = 1/2mv² , here v is velocity we know, v = ωAcos(ωt ± Ф) so, K.E = mω²A²/2cos²(ωt ± Ф) Total energy = K.E + P.E = mω²A²/2 cos²(ωt ± Ф) + mω²A²/2 sin²(ωt ± Ф) = mω²A²/2 [ cos²(ωt ± Ф) + sin²(ωt ± Ф) ] = mω²A²/2 [ ∵sin²α + cos²α = 1] = mω²A²/2 = constant Hence, total energy is always constant . |
|