1.

Differentiate `tan^(-1)((a cosx-b sinx)/(b cosx + a sinx))`w.r.t. x.

Answer» Let `y=tan^(-1)((acosx-bsinx)/(b cosx+asin x)).`
Putting `a=r sin theta and b = r cos theta,` we get
`y=tan^(-1){(r(sin thetacosx-cos thetasin x))/(r(cos thetacosx+sin thetasin x))}`
`=tan^(-1){(sin(theta-x))/(cos(theta-x))}=tan^(-1){tan(theta-x)}`
`=theta-x=(tan^(-1).(a)/(b)-x)[because (a)/(b)=tan theta rArr theta= tan^(-1).(1)/(b)].`
`therefore(dy)/(dx)=(d)/(dx)(tan^(-1).(a)/(b)-x)`
`=(d)/(dx)(tan^(-1).(a)/(b))-(d)/(dx)(x)=-1" "[because tan^(-1).(a)/(b)="constant"].`


Discussion

No Comment Found