InterviewSolution
Saved Bookmarks
| 1. |
If for `x (0,1/4),`the derivative of `tan^(-1)((6xsqrt(x))/(1-9x^3))`is `sqrt(x)dotg(x),`then `g(x)`equals:`(3x)/(1-9x^3)`(2) `3/(1+9x^3)`(3) `9/(1+9x^3)`(4) `(3xsqrt(x))/(1-9x^3)`A. `(9)/(1+9x^(3))`B. `(3xsqrt(x))/(1-9x^(3))`C. `(3x)/(1-9x^(3))`D. `(3)/(1+9x^(3))` |
|
Answer» Correct Answer - A Let `y=tan^(-1)((6xsqrt(x))/(1-9x^(3))),x in(0,(1)/(4))`. Then, `y=tan^(-1)((2xx3xsqrt(x))/(1-(3xsqrt(x))^(2)))` `implies" "y=2tan^(-1)(3xsqrt(x))" "[{:(becausetan^(-1)((2x)/(1-x^(2)))=2tan^(-1)x","),(" if "-1ltxlt1):}]` `implies" "(dy)/(dx)=2xx(1)/(1+9x^(3))xx(9)/(2)sqrt(x)=sqrt(x)(9)/(1+9x^(3))` `implies" "(dy)/(dx)=sqrt(x)g(x)," where "g(x)=(1)/(1+9x^(3))` |
|