1.

Differentiate `tan^(-1){(sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))}`with respect to `cos^(-1)x^2`

Answer» Let `u=tan^(-1){(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))} and v = cos^(-1)x^(2).`
Then, `cos^(-1)x^(2)=v rArr x^(2)=cos v`.
Putting `x^(2)=cos v`, we get
`u=tan^(-1){(sqrt(1+cosv)-sqrt(1-cosv))/(sqrt(1+cosv)+sqrt(1-cosv))}`
`rArrtan^(-1){(sqrt(2cos^(2)(v//2))-sqrt(2sin^(2)(v//2)))/(sqrt(2cos^(2)(v//2))+sqrt(2sin^(2)(v//2)))}`
`=tan^(-1){(cos(v//2)-sin(v//2))/(cos(v//2)+sin(v//2))}=tan^(-1){(1-tan(v//2))/(1+tan(v//2))}`
`" [dividing num. and denom. by cos (v/2)]"`
`=tan^(-1){tan((pi)/(4)-(v)/(2))}=((pi)/(4)-(v)/(2)).`
`thereforeu=((pi)/(4)-(v)/(2))rArr (du)/(dv)=(-1)/(2).`


Discussion

No Comment Found