1.

Differentiate the following with respect to x. (i) sin2 x (ii) cos2 x (iii) cos3 x

Answer»

For the following problems chain rule to be used: 

\(\frac{d}{dx}\)f(g(x)) = f'(g(x)).g'(x) 

\(\frac{d}{dx}\)[f(x)]n = n[f(x)]n - 1 x \(\frac{d}{dx}\)f(x)

(i) Let y = sin2 x = (sin x)2 

\(\frac{dy}{dx}\) = 2(sin x)2-1 \(\frac{d}{dx}\)(sin x) 

= 2 sin x (cos x) 

= sin 2x

(ii) y = cos2 x = (cos x)2 

\(\frac{dy}{dx}\) = 2(cos x)2-1 \(\frac{d}{dx}\)(cos x) 

= 2 cos x (-sin x) 

= -2 sin x cos x 

= -sin 2x

(iii) y = cos3

y = (cos x)3

\(\frac{dy}{dx}\) = 3(cos x)3 - 1 \(\frac{d}{dx}\)(cos x) 

= 3 cos2 x (-sin x) 

= -3 cos2 x sin x 

= -3 cos x (sin x cos x) [Multiply and divide by 2] 

= \(\frac{-3}{2}\) cos x (2 sin x cos x) 

= \(\frac{-3}{2}\) cos x sin 2x



Discussion

No Comment Found