InterviewSolution
| 1. |
Differentiate the following with respect to x. (i) sin2 x (ii) cos2 x (iii) cos3 x |
|
Answer» For the following problems chain rule to be used: \(\frac{d}{dx}\)f(g(x)) = f'(g(x)).g'(x) \(\frac{d}{dx}\)[f(x)]n = n[f(x)]n - 1 x \(\frac{d}{dx}\)f(x) (i) Let y = sin2 x = (sin x)2 \(\frac{dy}{dx}\) = 2(sin x)2-1 \(\frac{d}{dx}\)(sin x) = 2 sin x (cos x) = sin 2x (ii) y = cos2 x = (cos x)2 \(\frac{dy}{dx}\) = 2(cos x)2-1 \(\frac{d}{dx}\)(cos x) = 2 cos x (-sin x) = -2 sin x cos x = -sin 2x (iii) y = cos3 x y = (cos x)3 \(\frac{dy}{dx}\) = 3(cos x)3 - 1 \(\frac{d}{dx}\)(cos x) = 3 cos2 x (-sin x) = -3 cos2 x sin x = -3 cos x (sin x cos x) [Multiply and divide by 2] = \(\frac{-3}{2}\) cos x (2 sin x cos x) = \(\frac{-3}{2}\) cos x sin 2x |
|