1.

Solve: y = 4x+y

Answer»

Given y = 4x+y, diff. w r.t. x

\(\frac{dy}{dx}\) = 4x + ylog4(1 + \(\frac{dy}{dx}\)) = 4x + y

\(\frac{dy}{dx}\)(1 - 4x + ylog4) = 4x + y log4

∴ \(\frac{dy}{dx}\) = \(\frac{4^{x + y}.log4}{1 - 4^{x + y}.log4}\)



Discussion

No Comment Found