1.

Differentiate w.r.t. x: `(i)cos^(-1)((1-x^(2))/(1+x^(2)))" "(ii)sin^(-1)((2x)/(1+x^(2)))" "(iii)sec^(-1)((1)/(2x^(2)-1))`

Answer» (i) Let `y=cos^(-1)((1-x^(2))/(1+x^(2)))`
Putting `x=tan theta,` we get
`y=cos^(-1)((1-tan^(2)theta)/(1+tan^(2)theta))=cos^(-1)(cos2 theta)=2theta=2tan^(-1)x`.
`therefore(dy)/(dx)=(2)/((1+x^(2))).`
Hence, `(d)/(dx){cos^(-1)((1-x^(2))/(1+x^(2)))}=(2)/((1+x^(2))).`
(ii) Let `y=sin^(-1)((2x)/(1+x^(2)))`.
Putting `x=tan theta,` we get
`y=sin^(-1)((2tan theta)/(1+tan^(2)theta))=sin^(-1)(sin 2 theta)=2 theta=2tan^(-1)x`.
`therefore(dy)/(dx)=(2)/((1+x^(2)))`.
Hence, `(d)/(dx){sin^(-1)((2x)/(1+x^(2)))}=(2)/((1+x^(2))).`
(iii) Let `y=sec^(-1)((1)/(2x^(2)-1))`.
Putting `x=cos theta,` we get
`y=sec^(-1)((1)/(2cos^(2)theta-1))=sec^(-1)((1)/(cos 2 theta))`
`=sec^(-1)(sec 2 theta)=2 theta=2cos^(-1)x`.
`therefore y=2cos^(-1)x.`
Hence, `(dy)/(dx)=2(d)/(dx)(cos^(-1)x)=(-2)/(sqrt(1-x^(2))).`


Discussion

No Comment Found