1.

Differentiation of (√x+1/√x)²

Answer»

GIVEN :

• A FUNCTION \rm{ \left( \sqrt{<klux>X</klux>} +  \dfrac{1}{ \sqrt{x} } \right) }^{2}

TO FIND :

• Differentiate form of given function = ?

SOLUTION :

LET the function –

\rm \implies y = { \left( \sqrt{x} +  \dfrac{1}{ \sqrt{x} } \right) }^{2}

• Using identity –

\rm \implies { \left(a+b \right)}^{2}  =  {a}^{2} +  {b}^{2} + 2ab

• So that –

\rm \implies y = { ( \sqrt{x})^{2}  +  \left( \dfrac{1}{ \sqrt{x} } \right) }^{2} + 2( \sqrt{x} ) \left( \dfrac{1}{ \sqrt{x} } \right)

\rm \implies y = x+ \dfrac{1}{x} + 2

• We should write this as –

\rm \implies y = x+ {x}^{ - 1} + 2

• Using FORMULAS

\rm \to  \dfrac{d( {x}^{n})}{dx} = n {x}^{n - 1}

\rm \to  \dfrac{d(constant)}{dx} = 0

• Now differentiate with respect to 'x' –

\rm \implies  \dfrac{dy}{dx} =  \dfrac{d(x)}{dx} + \dfrac{d({x}^{ - 1})}{dx}+ \dfrac{d(2)}{dx}

\rm \implies  \dfrac{dy}{dx} = 1+( - 1){x}^{( - 1 - 1)}+0

\rm \implies  \dfrac{dy}{dx} = 1 - {x}^{ -2}

\rm \implies \large{ \boxed{ \rm \dfrac{dy}{dx} = 1 - \dfrac{1}{{x}^{2}}}}



Discussion

No Comment Found

Related InterviewSolutions