InterviewSolution
Saved Bookmarks
| 1. |
Discuss the extremum of `f(x)=x(x^2-4)^(-1/3)` |
|
Answer» Correct Answer - Point of local maxima : x=`-2sqrt(3)` Point of local minima : `x=2sqrt(3)` `f(x)=x(x^(2)-4)^(-1//3` `f(x)=(x^(2)-4)^(-1//3-1)/(3)(x^(2)-4)-4//3(2x)x` `=(1)/(x^(2)-4)^(1//3)-(2x^(2))/(3(x^(2)-4)^(4//3)` `=3(x^(2)-4)-2x^(2)/(3(x^(2-4))^(4//3)` `=(x^(2-12))/(3(x^(2)-4)^(4//3)` Sign scheme of f(X) is as follows: Thus `x=2 sqrt(3)` is point opf minima and x =`-sqrt(3)` is point of maxima `f_(min)=f(2 sqrt(3))=2 sqrt(3)(12-4)A^(-1//3)=sqrt(3)` Here maxima value is less than minimum value Thus is because f(X) discontinous x=2 Since f(X) is unbounded function both the extreme values are local |
|