

InterviewSolution
Saved Bookmarks
1. |
दर्शाइए कि अवकल समीकरण `2ye^((x)/(y))dx+(y-2xe^((x)/(y)))dy = 0` समघातीय है और यदि x = 0 जब `y = 1` दिया हुआ है तो इस समीकरण का विशिष्ट हल ज्ञात कीजिए | |
Answer» `because " " 2ye^((x)/(y))dx+(y-2xe^((x)/(y)))dy = 0` या `" " 2ye^((x)/(y))dx-(2xe^((x)/(y))-y)dy = 0` या `" " 2ye ((x)/(d))dx = (2xe ^((x)/(y)) - y) dy` या `" " (dx)/(dy) = (2xe^((x)/(y))-y)/(2ye^((x)/(y)))` अतः यह एक समाघाती अवकल समीकरण है | अब माना x = vy हो, तब `" " (dx)/(dy) = v + y(dv)/(dy)` `therefore " " v +y (dv)/(dy) = (2vye^(v) - y)/(2ye^(v)) = (2ve^(v) -1)/(2e^(v))` `" " y""(dv)/(dy) = (2ve^(v) -1)/(2e^(v)) -v = (1)/(2e^(v))` या `" " 2e^(v) dv = (dy)/(y)` या `" " 2fe^(v)dv = -f""(dy)/(y)` `rArr " " 2e^(v) = -log |y| + c` अब `v = (x)/(y)` रखने पर, `2e^((x)/(y)) + log |y| =c ` अब `x = 0` और `y = 1` रखने पर, `2e^(0) + log 1 = c` `c= 2` अतः `" " 2e^((x)/(y)) + log|y| = 2.` |
|