

InterviewSolution
Saved Bookmarks
1. |
`(dy)/(dx)=2x^(2)+x,y=1` यदि x=0 |
Answer» दिया है, `(x^(3)+x^(2)+x+1)(dy)/(dx)=2x^(2)+x` `implies dy=(2x^(2)+x)/((x^(3)+x^(2)+x+1))dx` `implies int dy = int(2x^(2)+x)/(x^(2)(x+1)+1(x+1))dx` `= int dy = int (2x^(2)+x)/((x+1)(x^(2)+1))dx` `implies y=int(2x^(2)+x)/((x+1)(x^(2)+1))dx" ....(1)"` माना `(2x^(2)+x)/((x+1)(x^(2)+1))=(A)/((x+1))+(Bx+C)/((x^(2)+1))" ....(2)"` `implies (2x^(2)+x)/((x+1)(x^(2)+1))=(A(x^(2)+1)+(Bx+C)(x+1))/((x+1)(x^(2)+1))` `implies 2x^(2)+x=Ax^(2)+A+Bx^(2)+Bx+Cx+C` `.^(____)2x^(2)+x=x^(2)(A+B)+x(B+C)+(A+C)` दोनों और अचर पद, x तथा `x^(2)` के गुणांकों की तुलना करने पर, `A+B=2,B+C=1` तथा `A+C=0` समीकरणों को हल करने पर, `A=(1)/(2), B=(3)/(2)` तथा `C=-(1)/(2)` A, B तथा C के मान समीकरण (2) में रखने पर, `(2x^(2)+x)/((x+1)(x^(2)+1))=(1)/(2(x+1))+((3)/(2)x-(1)/(2))/(x^(2)+1)` `=int(2x^(2)+x)/((x^(2)+1)(x+1))dx` `=(1)/(2)int(1)/((x+1))dx+int((3)/(2)x-(1)/(2))/((x^(2)+1))dx` तब, समीकरण (1) से, `y=(1)/(2)log|x+1|+(3)/(2)int(x)/((x^(2)+1))dx-(1)/(2)int(1)/((x^(2)+1))dx` `implies y=(1)/(2)log|x+1|+(3)/(2)int(x)/((x^(2)+1))dx-(1)/(2)tan^(-1)x` माना `x^(2)+1=timplies2x=(dt)/(dx)impliesdx=(dt)/(2x)` `therefore y=(1)/(2)log|x+1|+(3)/(2)int(x)/(t)(dt)/(2x)-(1)/(2)tan^(-1)x` `implies y=(1)/(2)log|x+1|+(3)/(4)int(1)/(t)dt-(1)/(2)tan^(-1)x` `implies y=(1)/(2)log|x+1|+(3)/(4)log|t|-(1)/(2)tan^(-1)x+C` `implies y=(1)/(2)log|x+1|+(3)/(4)log|x^(2)+1|-(1)/(2)tan^(-1)x+C` `impliesy=(1)/(4)[2log|x+1|+3log|x^(2)+1|]-(1)/(2)tan^(-1)x+C` `impliesy=(1)/(4)[log{(x+1)^(2)(x^(2)+1)^(3)}]-(1)/(2)tan^(-1)x+C" ....(3)"` जब x = 0, तब y = 1 समीकरण (3) में रखने पर, `1=(1)/(4)log(1)-(1)/(2)tan^(-1)(0)+C` `implies1=(1)/(4)xx0-(1)/(2)xx0+CimpliesC=1` C = 1, समीकरण (3) में रखने पर, `y=(1)/(4)[log{(x+1)^(2)(x^(2)+1)^(3)}]-(1)/(2)tan^(-1)x+1` जोकि अभीष्ट व्यापक हल है। |
|