

InterviewSolution
Saved Bookmarks
1. |
`(dy)/(dx)-(y)/(x)+cosec((y)/(x))=0 , y = 0` यदि x = 1 |
Answer» `(dy)/(dx)=(y)/(x)-(1)/(sin.(y)/(x))` `implies v+x(dv)/(dx)=v-(1)/(sin v)` माना `y = v x implies (dy)/(dx)=v+x(dv)/(dx)` `implies x(dv)/(dx)=-(1)/(sinv)` `implies -sinv dv = (dx)/(x)` `implies -intsin v dv=int(dx)/(x)+c` `implies cos v= log x+c` `implies cos v=logx+c` `implies cos.(y)/(x)=logx+c` दिया है x = 1 पर y = 0 `therefore cos 0 = log 1 + c implies c = 1` अतः `cos.(y)/(x)=logx+1` |
|