 
                 
                InterviewSolution
 Saved Bookmarks
    				| 1. | एक सदिश `vecr` का x-अक्ष के झुकाव `45^(@)` और y - अक्ष से झुकाव `60^(@)` है यदि`|vecr|=8 ,` तो `vecr` ज्ञात कीजिए । | 
| Answer» यहाँ ` alpha = 45^(@) , beta = 60^(@)` हम जानते है कि `l = cos alpha , m= cos 60^(@)` `implies l= cos 45^(@), m= cos 60^(@)` `implies l=(1)/(sqrt(2)), m=(1)/(2)` और `l^(2)+m^(2)+n^(2)=1` `implies (1)/(2)+(1)/(4)+n^(2)=1` `implies(1)/(2)+(1)/(4)+n^(2)=1` `implies n^(2)=(1)/(4)` `implies n=+- (1)/(2)` `therefore hatr = l hati +m hatj+nhatk =(1)/(sqrt(2))hati+(1)/(2)hatj +- (1)/(2) hatk` प्रश्नानुसार `|vecr|=8` ` therefore vecr = 8 hatr` `=8((1)/(sqrt(2))hati + (1)/(2) hatj +- (1)/(2) hatk )=4 ( sqrt(2) hati + hatj + hatk)` | |