InterviewSolution
Saved Bookmarks
| 1. |
Eliminate `theta` from the equation `s=sin theta +"cosec" theta and r= sin theta-"cosec" theta` . |
|
Answer» Given, `s=sin theta + "cosec"theta" "`(1) `r= sin theta- "cosec"theta" "`(2) Adding Eqs. (1) and (2), we get `s+r=2 sin theta ` `sin theta=(s+r)/(2)" " `(3) Substrating Eq. (2) from Eq. (1), we get `s-r=2 "cosec"theta` `"cosec" theta=(s-r)/(2)" "` (4) Multiplying Eqs. (3) and (4), we get `sin theta * "cosec" theta=((s+r)/(2))((s-r)/(2))` `sin theta*(1)/(sin theta)-(s^(2)-r^(2))/(4)` `1=(s^(2)-r^(2))/(4) (or) s^(2)-r^(2)=4`. Hence, by eliminating `theta`, we obtain the relation `s^(2)-r^(2)=4`. |
|