InterviewSolution
Saved Bookmarks
| 1. |
Evaluate ∫√((1-x)/x) dx\(\int\sqrt{\frac{1-x}{x}}\) dx |
|
Answer» Given, ∫√((1-x)/x) dx Let, \(\sqrt x\) = t \(\frac{d}{dx}(\sqrt x)\) = dt \(\frac{1}{2\sqrt x}\) dx = dt dx = 2t dt Now, \(\int\frac{\sqrt {1-t^2}}{t}\) 2t dt = 2\(\int\sqrt{1-t^2}\) dt Consider, t = sin k dt = cos k dk = 2\(\int\sqrt{1-sin^2k}\) .cosk dk = 2\(\int\sqrt{cos^2k}\) .cosk dk = 2 ∫cos2k dk = ∫2 cos2k dk =∫cos 2k-1 dk [since, cos 2x = 2cos2x-1] = \(\frac{sin\,2k}{2}\) - k + c = \(\frac{2sink\,cosk}{2}\) - k + c = t cos(sin-1t) - 2sin-1t + 2c =√x cos(sin-1√x )- 2sin-1√x + 2c |
|