1.

Evaluate ∫√((1-x)/x) dx\(\int\sqrt{\frac{1-x}{x}}\) dx

Answer»

Given,

∫√((1-x)/x) dx

Let,

\(\sqrt x\) = t

\(\frac{d}{dx}(\sqrt x)\) = dt

\(\frac{1}{2\sqrt x}\) dx = dt

dx = 2t dt

Now,

\(\int\frac{\sqrt {1-t^2}}{t}\) 2t dt

= 2\(\int\sqrt{1-t^2}\) dt

Consider, 

t = sin k 

dt = cos k dk

= 2\(\int\sqrt{1-sin^2k}\) .cosk dk

= 2\(\int\sqrt{cos^2k}\) .cosk dk

= 2 ∫cos2k dk

= ∫2 cos2k dk 

=∫cos 2k-1 dk 

[since, cos 2x = 2cos2x-1]

\(\frac{sin\,2k}{2}\) - k + c

\(\frac{2sink\,cosk}{2}\) - k + c

= t cos(sin-1t) - 2sin-1t + 2c 

=√x cos(sin-1√x )- 2sin-1√x + 2c



Discussion

No Comment Found