1.

\(\int\frac{cosx}{\sqrt{4-sin^2x}}\) = ?∫cosx/√{4 - sin2x}A.sin-1x/2 + CB.sin-1(1/2cosx) + CC.sin-1(2sinx) + CD. sin-1(1/2sinx) + C

Answer»

Put sin x = t 

⇒ cos x dx = dt 

∴ The given equation becomes

\(\int\frac{dt}{\sqrt{4-t^2}}\)

= sin-1 t/2 + C

But t = sin x

= sin-1\((\frac{sinx}2)\) + C



Discussion

No Comment Found