1.

Evaluate ∫ cos33x dx

Answer»

We can write ∫ cos33x dx as:

∫cos3x(cos3x)2dx ∫cos3x(cos23x)dx and

further as :

= cos3x(1-sin23x)dx 

= ∫cos3xdx-∫cos3x(sin23x)dx 

Taking A = ∫cos3xdx 

Solving for A,

A = \(\frac{sin3x}{3}\)

Taking B = ∫cos3x(sin23x)dx 

In this taking sin3x = t 

Differentiating on both sides we get,

3cos3xdx = dt 

Solving by putting these values we get,

B = \(\int\frac{t^2}{3}\)dt

\(\frac{t^3}{9}\) + c

Substituting values we get,

B = \(\frac{sin^33x}{9}\) + c

Our final answer is A+B i.e,

\(\frac{sin3x}{3}\) + \(\frac{sin3x}{3}\) + c



Discussion

No Comment Found