Saved Bookmarks
| 1. |
Evaluate\(\displaystyle\int \dfrac{1}{1+ sinx } dx\)1. tan x + sec x + c2. sec x - tan x + c3. cot x - sec x + c4. tan x - sec x + c5. cot x - tan x + c |
|
Answer» Correct Answer - Option 4 : tan x - sec x + c Concept: \(\int sec^2x\ dx = tanx\) \(\int sec\ x \ tan\ x \ dx= sec\ x\) Calculation: \(\displaystyle\int \dfrac{1}{1+ sinx } dx= \displaystyle\int \dfrac{1}{1+ sinx } dx \times \dfrac{1-sinx}{1- sinx}\) \(=\displaystyle\int \dfrac{1- sinx }{1- sin^2x } dx= \displaystyle\int \dfrac{1- sinx}{cos^2 } dx\) \(= \displaystyle\int\left[ \dfrac{1}{cos^2x }- \dfrac{sinx}{cos^2 x} dx\right]\) \(= \displaystyle\int(sec^2 x - sec x. tan x ) dx\) = tan x - sec x + c |
|