| 1. |
If\(\mathop \smallint \nolimits_{\rm{a}}^{\rm{b}} {{\rm{x}}^3}{\rm{dx}} = 0{\rm{\;}}\) and \(\mathop \smallint \nolimits_{\rm{a}}^{\rm{b}} {{\rm{x}}^2}{\rm{dx}} = \frac{2}{3},\)then what are the values of a and b respectively?1. -1, 12. 1, 13. 0, 04. 2, -25. None of these |
|
Answer» Correct Answer - Option 1 : -1, 1 Concept: Integral properties: Consider a function f(x) defined on x.
Given: \(\mathop \smallint \nolimits_{\rm{a}}^{\rm{b}} {{\rm{x}}^3}{\rm{dx}} = 0{\rm{\;}}\) \(\mathop \smallint \nolimits_{\rm{a}}^{\rm{b}} {{\rm{x}}^2}{\rm{dx}} = \frac{2}{3}\) \(\mathop \smallint \nolimits_{\rm{a}}^{\rm{b}} {{\rm{x}}^3}{\rm{dx}} = 0{\rm{\;}}\) Let f(x) = x3 F(-x) = -x3 ⇒ f(-x) = - f(x) ∴ f(x) is an odd function. We know that, if f(x) is odd function then,\(\mathop \smallint \nolimits_{ - {\rm{a}}}^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}} = 0\) So, b = -a ----(1) Now,\(\mathop \smallint \nolimits_{\rm{a}}^{\rm{b}} {{\rm{x}}^2}{\rm{dx}} = \frac{2}{3}\) \(\Rightarrow \left[ {\frac{{{{\rm{x}}^3}}}{3}} \right]_{\rm{a}}^{\rm{b}} = \frac{2}{3}\) ⇒ b3 – a3 = 2 ⇒ -a3 – a3 = 2 [Using (1)] ⇒ a3 = -1 ⇒ a = -1 So, b = 1 |
|