1.

If\(\mathop \smallint \nolimits_{\rm{a}}^{\rm{b}} {{\rm{x}}^3}{\rm{dx}} = 0{\rm{\;}}\) and \(\mathop \smallint \nolimits_{\rm{a}}^{\rm{b}} {{\rm{x}}^2}{\rm{dx}} = \frac{2}{3},\)then what are the values of a and b respectively?1. -1, 12. 1, 13. 0, 04. 2, -25. None of these

Answer» Correct Answer - Option 1 : -1, 1

Concept:

Integral properties: Consider a function f(x) defined on x.

  • \(\mathop \smallint \limits_{ - {\rm{a}}}^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{\;dx}} = \left\{ {\begin{array}{*{20}{c}} {2\mathop \smallint \limits_0^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}},\;\;\;f\left( {\rm{x}} \right) = f\left( { - x} \right)}\\ {0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;f\left( {\rm{x}} \right) = - f\left( { - x} \right)} \end{array}} \right.\)


Calculation:

Given:

\(\mathop \smallint \nolimits_{\rm{a}}^{\rm{b}} {{\rm{x}}^3}{\rm{dx}} = 0{\rm{\;}}\)

\(\mathop \smallint \nolimits_{\rm{a}}^{\rm{b}} {{\rm{x}}^2}{\rm{dx}} = \frac{2}{3}\)

\(\mathop \smallint \nolimits_{\rm{a}}^{\rm{b}} {{\rm{x}}^3}{\rm{dx}} = 0{\rm{\;}}\)

Let f(x) = x3

F(-x) = -x3

f(-x) = - f(x)

f(x) is an odd function.

We know that, if f(x) is odd function then,\(\mathop \smallint \nolimits_{ - {\rm{a}}}^{\rm{a}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}} = 0\)

So, b = -a ----(1)

Now,\(\mathop \smallint \nolimits_{\rm{a}}^{\rm{b}} {{\rm{x}}^2}{\rm{dx}} = \frac{2}{3}\)

\(\Rightarrow \left[ {\frac{{{{\rm{x}}^3}}}{3}} \right]_{\rm{a}}^{\rm{b}} = \frac{2}{3}\)

b3 – a3 = 2

-a3 – a3 = 2 [Using (1)]

a3 = -1

a = -1

So, b = 1



Discussion

No Comment Found

Related InterviewSolutions