| 1. |
Find a + b, if\(\smallint \left( {\sin 2x - 4{e^{3x}}} \right)\;dx = - \frac{1}{a}\cos 2x - \frac{b}{3}\;{e^{3x}} + C\)where C is the integration constant ?1. 62. 43. 24. None of these |
|
Answer» Correct Answer - Option 1 : 6 CONCEPT:
CALCULATION: Given:\(\smallint \left( {\sin 2x - 4{e^{3x}}} \right)\;dx = - \frac{1}{a}\cos 2x - \frac{b}{3}\;{e^{3x}} + C\) As we know that,\(\smallint \left[ {f\left( x \right) \pm g\left( x \right)} \right]dx = \;\smallint f\left( x \right)\;dx \pm \;\smallint g\left( x \right)\;dx\) ⇒\(\smallint \left( {\sin 2x - 4{e^{3x}}} \right)\;dx = \smallint \sin 2x\;dx - \;\smallint 4{e^{3x}}\;dx\) As we know that,\(\smallint \sin x\;dx = \; - \cos x + C\)and\(\smallint {e^x}\;dx = {e^x} + C\) ⇒\(\smallint \sin 2x\;dx + \;\smallint 4{e^{3x}}\;dx = - \frac{1}{2} cos \ 2x - \frac{4}{3} e^{3x} + C\) ⇒\(\smallint \left( {\sin 2x - 4{e^{3x}}} \right)\;dx = - \frac{1}{2} cos \ 2x - \frac{4}{3} e^{3x} + C\) Now, by comparing the above equation with\(\smallint \left( {\sin 2x - 4{e^{3x}}} \right)\;dx = - \frac{1}{a}\cos 2x - \frac{b}{3}\;{e^{3x}} + C\)we get, ⇒ a = 2 and b = 4 ⇒ a + b = 6 Hence, correct option is 1. |
|