1.

Evaluate :(i)sqrt(3-2sqrt(2))""(ii)sqrt(9-6sqrt(2))

Answer»


Solution :(i) Let `SQRT(3-2sqrt(2))=sqrt(x)-sqrt(y)`
Squaring both sides, we get. . .(1)
`3-2sqrt(2)=(sqrt(x)-sqrt(y))^(2)`
`rArr3-2sqrt(2)=x+y-2sqrt(xy)`
Comparing rational and IRRATIONAL PARTS on both sides, we get
`x+y=3,xy=2`
`"Now "(x-y)^(2)=(x+y)^(2)-4xy`
=9-8=1(identity)
`:.x-y=+-1`
`"If " x-y=1`. . .(2)
`andul (x+y=3)`
Adding,
2x=4
`rArrx=2`
`2" "y=1" "rArr" "y=1`
`:.sqrt(3-2sqrt(2))=sqrt(2)-sqrt(1)=sqrt(2)-1`
`"If "x-y=-1`
`andul(x+y=3)`. . . .(3)
Adding
2x=2
`:.""x=1`
Put x = 1 in equation (3),
`1+y=3" "rArr" "y=2`
`:." "sqrt(3-2sqrt(2))=sqrt(1)-sqrt(2)=1-sqrt(2)`
But it is a negative quantity and SQUARE root `''sqrt''` cannot give a negative value.
So, `sqrt(3-2sqrt(2))!=1-sqrt(2)`
`"Hence,"sqrt(3-2sqrt(2))=sqrt(2)-1`
(II) Let `sqrt(9+6sqrt(2))=sqrt(x)+sqrt(y)`
Squaring both sides, we get `:." "9+6sqrt(2)=x+y+2sqrt(xy)`
`rArr9+2(3sqrt(2))=x+y+2sqrt(xy)`
Comparing, rational and irrational parts on both sides.
`:." "x+y=9,sqrt(xy)=3sqrt(2)" "rArr" "xy=18`
`"Now, "(x-y)^(2)=(x+y)^(2)-4xy`(identity)
=81-72=9
`:." "x-y=+-3`
`"If "x-y=3`. . .(2)
`andul(x+y=9)`
Adding,
`2x=12" "rArr" "y=3`
`:.sqrt(9+6sqrt(2))=sqrt(6)+sqrt(3)`
`:.sqrt(9+6sqrt(2))=sqrt(6)+sqrt(3)`
`"If "x-y=-3`. . .(3)
`andul(x+y=9)`
Adding,
`2x=6" "rArr" "x=3`
Put x = 3 in (3), we get
`3-y=-3" "rArr" "y=6`
`:.sqrt(9+6sqrt(2))=sqrt(3)+sqrt(6)`


Discussion

No Comment Found