1.

Evaluate: `int_0^1(x t a n^(-1)x)/((1+x^2)^(3//2))dx`

Answer» `(i)` Put `x=tantheta` so that `dx=sec^(2)theta d theta`.
Clearly, `x=0impliestheta=0` and `x=1impliestheta=(pi//4)`.
`:.int_(0)^(1)(xtan^(-1)x)/((1+x^(2))^(3//2))dx=int_(0)^(pi//4)(theta tan theta)/(sec^(3)theta)*sec^(2)theta d theta=int_(0)^(pi//4)theta sin d theta`
`=[-thetacostheta]_(0)^(pi//4)-int_(0)^(pi//4)(-costheta)d theta`[integrating by parts]
`=[-thetacostheta]_(0)^(pi//4)+[sintheta]_(0)^(pi//4)=-(pi)/(4)cos.(pi)/(4)+sin.(pi)/(4)`
`=((-pi)/(4sqrt(2))+(1)/(sqrt(2)))=(4-pi)/(4sqrt(2))=(sqrt(2)(4-pi))/(8)`.
`(ii)` Put `x=sin theta` so that `dx=costheta d theta`
Clearly, `(x=0impliestheta=0)` and `(x=(1)/(sqrt(2))impliestheta=(pi)/(4))`.
`:.int_(0)^(1//sqrt(2))(sin^(-1)x)/((1-x^(2))^(3//2))dx=int_(0)^(pi//4)(theta)/(cos^(3)theta)*costhetad theta=int_(0)^(pi//4)theta sec^(2)theta d theta`
`=[theta tan theta]_(0)^(pi//4)-int_(0)^(pi//4)1*tan theta d theta`[integrating by parts]
`=(pi)/(4)+[log(costheta)]_(0)^(pi//4)=(pi)/(4)+log(cos.(pi)/(4))`
`=(pi)/(4)+log((1)/(sqrt(2)))=((pi)/(4)-(1)/(2)log2)`.


Discussion

No Comment Found