InterviewSolution
Saved Bookmarks
| 1. |
The value of `int_0^oox/((1+x)(x^2+1))dx` isA. `2pi`B. `pi/4`C. `pi/16`D. `pi/32` |
|
Answer» Correct Answer - B Let `l = int_(0)^(oo) (x dx)/((1+x)(x^(2)+1))` By Partial fraction, `(x)/((1+x)(x^(2)+1))=(A)/((1+x))+(Bx+C)/((x^(2)+1))` `rArr x=A(x^(2)+1)+(1+x)(Bx+C)` `rArr x=A(x^(2)+1)+(Bx+Bx^(2)+C+Cx)` `rArr x =(A+B)x^(2)+(B+C)x +(A+C)` On comparing both sodes, we get `A+B=0, B+C=1, A+C=0` ...(i) On adding all these equations, we get `A+B+C=(1)/(2)` ...(ii) `therefore A=(1)/(2)-1=-(1)/(2),C=(1)/(2)` and `B=(1)/(2)` Then, `l=int_(0)^(oo){(-1)/(2(1+x))+(1)/(2)((x+1))/((x^(2)+1))}dx` `=-(1)/(2)int_(0)^(oo)(dx)/(1+x)+(1)/(2)int_(0)^(oo)(x)/(x^(2)+1)dx +(1)/(2)int_(0)^(oo)(dx)/(1+x^(2))` `=-(1)/(2)[log(1+x)]_(0)^(oo)+(1)/(4)[log(x^(2)+1)]_(0)^(oo)+(1)/(2)xx(pi)/(2)` `=-(1)/(2)lim_(x to oo)log (1+x)+(1)/(4) lim_(x to oo)log (1+x^(2))+(pi)/(4)` `= lim_(x to oo)log [((1+x^(2))^(1//4))/((1+x)^(1//2))]+(pi)/(4)` `= lim_(x to oo)log [(sqrt(x)((1)/(x^(2))+1)^(1//4))/(sqrt(x)((1)/(x)+1)^(1//2))]+(pi)/(4)` `= log. ((0+1)^(1//4))/((0+1)^(1//2))+(pi)/(4)` `= log (1) +(pi)/(4)=0+(pi)/(4)=(pi)/(4)` |
|