1.

The value of `int_0^1 (x^4+1)/(x^2+1)dx` isA. `(1)/(6)(3pi-4)`B. `(1)/(6)(3-4pi)`C. `(1)/(6)(3pi+4)`D. `(1)/(6)(3+4pi)`

Answer» Correct Answer - A
`int_(0)^(1)(x^(4)+1)/(x^(2)+1)dx=int_(0)^(1)(x^(4)-1)/(x^(2)+1)dx+2int_(0)^(1)(dx)/(1+x^(2))`
`int_(0)^(1)(x^(2)-1)dx+2int_(0)^(1)(dx)/(1+x^(2))`
`=[(x^(3))/(3)-x]_(0)^(1)+[2tan^(-1)x]_(0)^(1)`
`=-(2)/(3)+(pi)/(2)=(3pi-4)/(6)`


Discussion

No Comment Found