1.

`l=int_(-2)^(1)(tan^(-1)x+"cot"^(-1)(1)/(x))dx` is equal toA. ` (5pi)/2+ 4 tan ^(-1) 2 - In 5/2`B. ` (5pi)/2 - 4 tan^(-1) 2 + In 5/2`C. ` (5pi)/2 - 3 tan ^(-1) 2 - In 5/2`D. ` (5pi)/2 - 3 tan ^(-1) 2 + 5/2`

Answer» Correct Answer - B
`l=int_(-2)^(1)(tan^(-1)+cot^(-1).(1)/(x))dx`
`=int_(-2)^(0)(tan^(-1)x+pi+tan^(-1)x)dx+int_(0)^(1)(tan^(-1)x+tan^(-1)x)dx`
`=int_(-2)^(0)2tan^(-1)xdx+int_(-2)^(0)pidx+int_(0)^(1)2tan^(1)xdx`
`=2[x tan^(-1)x-(1)/(2)log(1+x^(2))]_(-2)^(0)+[pix]_(-2)^(0)+2[x tan^(-1)x-(1)/(2)log(1+x^(2))]_(0)^(1)`
`=(5pi)/(2)-4tan^(-1)2+log.(5)/(2)`


Discussion

No Comment Found